ОГЛАВЛЕНИЕ

ПРЕДИ	СЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ	11
ПРЕДИ	ИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ	11
ПРЕДИ	ИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ	13
Раздел <i>ПОТЕ</i>	I НЦИАЛЬНОЕ РАССЕЯНИЕ	
	л 1. Стационарная теория потенциального	
-	ния. Общие положения	
§ 1.1.	Постановка задачи. Интегральное уравнение	
	для волновой функции. Асимптотическое условие	15
§ 1.2.	Функция Грина свободного движения частицы.	
	Амплитуда рассеяния	20
§ 1.3.	Связь дифференциального сечения рассеяния	
	с амплитудой рассеяния	25
Упражн	нения	27
Лекция	а 2. Борновское приближение	
§ 2.1.	Разложение амплитуды рассеяния по кратности	
	взаимодействия. Борновское приближение	28
§ 2.2.	Об условиях применимости борновского	
	приближения	32
§ 2.3.	Угловая и энергетическая зависимости	
	рассеяния быстрых частиц на потенциале	
	конечного радиуса	34
§ 2.4.	Формула Резерфорда. Рассеяние точечного заряда	
	неподвижным протяженным зарядом	37
Упражн	ения	
_	з. Рассеяние на сферически-симметричном	
	иале. Разложение по парциальным волнам	
§ 3.1.	Дифференциальное и интегральное уравнения	
Ü	для радиальных волновых функций	42
§ 3.2.	Фазы рассеяния	
§ 3.3.	Энергетическая зависимость фаз рассеяния	
U	при низких энергиях	50
§ 3.4.	Методы вычисления фаз рассеяния	
0	ения	

Лекция	я 4. Рассеяние при низких и при высоких энергиях	
§ 4.1.	Рассеяние при низких энергиях. Длина рассеяния,	
	обобщенная длина рассеяния, эффективный радиус	
	взаимодействия	62
§ 4.2.	Рассеяние при высоких энергиях. Эйкональное	
		70
§ 4.3.	Сравнение эйконального и борновского	
	приближений. Условия применимости	
	эйконального приближения	
Упражі	нения	78
Лекция	я 5. Кулоновское рассеяние	
§ 5.1.	Особенности задачи о кулоновском рассеянии	79
	Решение задачи о кулоновском рассеянии	
ŭ.	в параболических координатах	83
§ 5.3.	Рассеяние на потенциале с кулоновской	
	асимптотикой	86
Упражі	нения	89
Лекция	я 6. Дополнительные вопросы теории	
	иального рассеяния	
§ 6.1.	•	
Ü	силового центра	90
§ 6.2.	Оператор перехода (<i>t</i> -оператор)	
§ 6.3.	Решение уравнения Липпмана—Швингера	
	для <i>t</i> -оператора. Случай сепарабельного	
	взаимодействия	97
§ 6.4.	Об аналитических свойствах <i>t</i> -матрицы	
§ 6.5.		
Ü	свободной частицы	100
Упражі	нения	
	я 7. Нестационарная теория столкновений	
	Столкновения при одномерном движении	103
	Рассеяние трехмерных волновых пакетов.	105
8 7.2.	Асимптотические состояния.	
	Оператор рассеяния	110
§ 7.3.	Свойства S-оператора. Связь S-оператора	0
3	с <i>t</i> -оператором	114
§ 7.4.		
3 ,	рассеяния в нестационарной теории	119

Упражи	нения	123
Раздел <i>МНОГ</i>	II ОЧАСТИЧНАЯ ТЕОРИЯ СТОЛКНОВЕНИЙ	
Лекция	я 8. Упругое и неупругое рассеяния частиц на	
	ной системе в борновском приближении	
§ 8.1.	Борновское приближение как первый порядок теории возмущений. Дифференциальные сечения упругого и неупругого рассеяний	125
§ 8.2.	Упругое рассеяние быстрых электронов	
o .	на атомах	130
§ 8.3.	Возбуждение дискретных уровней атомов быстрыми электронами. Понятие неупругого формфактора. Правила отбора при малом передаваемом импульсе. Энергетическая зависимость вероятности оптически	
	разрешенных переходов	133
§ 8.4.	Плотность перехода. Связь между неупругими формфакторами и переходными плотностями	
Упражі	нения	
•	я 9. Правила сумм в теории столкновений.	
	ижение полноты	
	Роль правил сумм в атомной и ядерной физике.	
y 7.11.	«Динамические» правила сумм в теории столкновений	144
§ 9.2.	Некогерентное рассеяние быстрых электронов на атомах. Связь вероятности рассеяния с парной	
	корреляционной функцией	149
§ 9.3.	Средняя энергия, теряемая частицей при	
	некогерентном рассеянии. Понятие	
	квазисвободного взаимодействия	
Упражи	нения	155
Лекция	я 10. Основные понятия многоканальной	
	и рассеяния	
-	Уравнения метода сильной связи каналов.	
v	Асимптотические условия	157
§ 10.2.	Задача о двух связанных каналах	
	Вероятность упругого и неупругого рассеяний:	
~	S-матрица	165

§ 10.4.	Понятие обобщенного оптического потенциала.	
	Оптическая модель упругого рассеяния	170
Упражі	нения	176
Лекция	я 11. Оптический потенциал в теории неупругого	
	ния. Метод искаженных волн	
§ 11.1.	Приближение искаженных волн	177
§ 11.2.	Метод искаженных волн и оптическая модель	181
	Метод искаженных волн при высоких энергиях	
Упражі	нения	190
Лекция	я 12. Резонансное рассеяние	
§ 12.1.	Резонансы в задаче о двух связанных каналах	190
	Резонансы в рассеянии и распадающиеся	
	состояния	198
	Признаки резонанса	201
§ 12.4.	Резонансный механизм расщепления составных	
	систем	
Упражі	нения	207
Лекция	я 13. Многочастичная теория столкновений	
в <i>t</i> -мат	ричной формулировке	
§ 13.1.	Метод Кермана—Мак-Мануса —Талера	208
	Двухчастичная <i>t</i> -матрица и оптический потенциал	
§ 13.3.	Импульсное приближение	216
§ 13.4.	Столкновения в системе трех частиц. Уравнения	
	Фаддеева	218
Упражі	нения	222
Лекция	я 14. Медленные столкновения	
	Поляризационный потенциал атомов	224
§ 14.2.	Взаимодействие между нейтральными атомами	227
§ 14.3.	Перезарядка атомов при медленных соударениях.	
	Понятие квазимолекулярных термов	228
§ 14.4.	Кулоновское возбуждение ядер	236
Упражі	нения	238
Лекция	я 15. Дифракционное рассеяние	
§ 15.1.	Рассеяние на абсолютно черной сфере	239
§ 15.2.	Модель Глаубера — Ситенко	242
	Неупругое и квазиупругое (некогерентное)	
~	рассеяния	249

	еупругое рассеяние в пределе очень сильного	
П	оглощения	255
	Іногоканальная теория дифракционного	
	ассеяния	
Упражнен		261
Раздел III	Ī	
	Ъ СИММЕТРИИ, УНИТАРНОСТИ	
	итичности	
	6. Унитарность S-матрицы. Дисперсионные	
	ения. Связь сечений прямых	
	ых процессов	
_	нитарность S-матрицы и ее следствия	262
	исперсионные соотношения	
	бращение времени. Связь сечений прямого	2/1
	обратного процессов при столкновении	274
	ния	
з пражист	киг	219
	7. Эффекты взаимодействий, зависящих	
	Тождественность частиц	
	нвариантные свойства амплитуды рассеяния	
	астиц со спином. Поляризация частиц	
-	ри рассеянии	280
	ассмотрение поляризационных явлений на основе	
	ппарата спиновой матрицы плотности	
§ 17.3. Pa	ассеяние тождественных частиц	291
§ 17.4. Э	ффекты тождественности частиц при столкновении	
cc	оставных систем	295
Упражнен	ния	298
ЛИТЕРАТУРА		
	■ ♥ ■ / N	ムノノ